Abstract:
Let $\Lambda$ be the group generated by reflections in faces of a Coxeter tetrahedron in the hyperbolic space $\mathbb{H}^3$. A tetrahedral manifold is a hyperbolic manifold $\mathcal{M}=\mathbb{H}^3/\Gamma$ uniformized by a torsion free subgroup $\Gamma$ of the group $\Lambda$. By a mirror symmetry we mean an orientation reversing isometry of the manifold acting by reflection. The aim of the paper to investigate mirror symmetries of the tetrahedral manifolds.