RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2018 Volume 15, Pages 1850–1856 (Mi semr1040)

Geometry and topology

Mirror symmetries of hyperbolic tetrahedral manifolds

D. A. Derevnina, A. D. Mednykhbc

a Industrial University of Tyumen, Lunacharskogo, 1, 625001, Tyumen, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
c Novosibirsk State University, Pirogova, 2, 630090, Novosibirsk, Russia

Abstract: Let $\Lambda$ be the group generated by reflections in faces of a Coxeter tetrahedron in the hyperbolic space $\mathbb{H}^3$. A tetrahedral manifold is a hyperbolic manifold $\mathcal{M}=\mathbb{H}^3/\Gamma$ uniformized by a torsion free subgroup $\Gamma$ of the group $\Lambda$. By a mirror symmetry we mean an orientation reversing isometry of the manifold acting by reflection. The aim of the paper to investigate mirror symmetries of the tetrahedral manifolds.

Keywords: hyperbolic space, isometry group, automorphism group, hyperbolic manifolds.

UDC: 515.162

MSC: 57M50,57M60

Received August 29, 2018, published December 30, 2018

Language: English

DOI: 10.33048/semi.2018.15.149



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024