RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 1–20 (Mi semr1043)

This article is cited in 3 papers

Probability theory and mathematical statistics

Large deviations for processes on half-line: Random Walk and Compound Poisson Process

F. C. Klebanera, A. A. Mogulskiib

a School of Mathematical Sciences, Monash University, Australia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, Novosibirsk, 630090, Russia

Abstract: We establish, under the Cramer exponential moment condition in a neighbourhood of zero, the Extended Large Deviation Principle for the Random Walk and the Compound Poisson processes in the metric space $\mathbb{V}$ of functions of finite variation on $[0,\infty)$ with the modified Borovkov metric.

Keywords: Large Deviations, Random Walk, Compound Poisson Process, Cramer's condition, rate function, Extended Large Deviation Principle.

UDC: 519.21

MSC: 60F10, 60G50, 60H10, 60J60

Received July 2, 2018, published January 24, 2019

Language: English

DOI: 10.33048/semi.2019.16.001



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024