RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 165–174 (Mi semr1047)

Mathematical logic, algebra and number theory

A criterion for the universality of a matrix from the group $UT_n(R)$ over a commutative and associative ring $R$ with unity

N. G. Khisamiev, S. D. Tynybekova, A. A. Konyrkhanova

Faculty of Information Technologies, 2, Satpayev str., Astana, 010008, Kazakhstan

Abstract: We find necessary and sufficient universality conditions of a matrix from the unitriangular matrix group of arbitrary finite dimension over a commutative associative ring with unity. An algorithm is used to determine the universality of the element of the unitriangular matrix group over the ring of polynomials with a finite number of variables with integer coefficients.

Keywords: unitriangular matrix group, derived subgroup, universal element, ring, Euclidean ring.

UDC: 512.54

MSC: 20F18,20H25

Received June 12, 2017, published February 6, 2019



© Steklov Math. Inst. of RAS, 2025