RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 465–480 (Mi semr1071)

This article is cited in 1 paper

Mathematical logic, algebra and number theory

On zero divisor graphs of finite commutative local rings

E. V. Zhuravlev, A. S. Monastyreva

Altai State University, 61, Lenina ave., Barnaul, 656049, Russia

Abstract: We describe the zero divisor graph of a commutative finite local rings $R$ of characteristic $2$ with Jacobson radical $J$ such that ${\dim_F J/J^2=2}$, ${\dim_F J^2/J^3=2}$, ${\dim_F J^3=1}$, $J^4=(0)$ and $F=R/J\cong GF(2^r)$, the finite field of $2^r$ elements.

Keywords: finite ring, local ring, zero divisor graph.

UDC: 512.55

MSC: 16P10

Received March 26, 2018, published April 2, 2019

DOI: 10.33048/semi.2019.16.029



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025