RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 493–500 (Mi semr1073)

This article is cited in 1 paper

Discrete mathematics and mathematical cybernetics

Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$

A. A. Makhneva, V. I. Belousovab

a N.N. Krasovsky Institute of Mathematics and Meckhanics, 16, S. Kovalevskoy str., Ekaterinburg, 620990, Russia
b Ural Federal University named after the first President of Russia B.N. Yeltsin, 19, Mira str., Ekaterinburg, 620002, Russia

Abstract: Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array $\{30,27,24;1,2,10\}$. Let $G={\rm Aut}(\Gamma)$ is nonsolvable group, $\bar G=G/S(G)$ and $\bar T$ is the socle of $\bar G$. If $\Gamma$ is vertex-symmetric then $(G)$ is $\{2\}$-group, and $\bar T\cong L_2(11)$, $M_{11}$, $U_5(2)$, $M_{22}$, $A_{11}$, $HiS$.

Keywords: strongly regular graph, distance-regular graph, automorphism.

UDC: 519.17

MSC: 05C25

Received February 18, 2019, published April 12, 2019

DOI: 10.33048/semi.2019.16.031



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025