RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 638–647 (Mi semr1083)

This article is cited in 1 paper

Discrete mathematics and mathematical cybernetics

On automorphisms of a distance-regular graph with intersection array $\{39,36,22;1,2,18\}$

A. A. Makhneva, M. M. Khamgokovab

a N.N. Krasovsky Institute of Mathematics and Meckhanics, 16, S. Kovalevskoy str., Ekaterinburg, 620990, Russia
b Kabardino-Balkarian State University named after H.M. Berbekov, 175, Chernyshevsky st., Nalchik, 360004, Russia

Abstract: Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array $\{39,36,22;1,2,18\}$. Let $G={\rm Aut}(\Gamma)$ is nonsolvable group, $\bar G=G/S(G)$ and $\bar T$ is the socle of $\bar G$. If $\Gamma$ is vertex-symmetric then $\bar T=L\times M$ and $L, M\cong Z_5,A_5,A_6$ or $PSp(4,3)$.

Keywords: distance-regular graph, automorphism.

UDC: 519.17

MSC: 05C25

Received March 21, 2019, published May 17, 2019

DOI: 10.33048/semi.2019.16.041



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025