RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 718–731 (Mi semr1090)

This article is cited in 2 papers

Differentical equations, dynamical systems and optimal control

Degenerating parabolic equations with a variable direction of evolution

A. I. Kozhanova, E. E. Macievskayab

a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia

Abstract: The aim of the paper is to study the solvability in the classes of regular solutions of boundary value problems for differential equations
$$ \varphi(t)u_t-\psi(t)\Delta u+c(x,t)u=f(x,t)\quad (x\in\Omega\subset \mathbb{R}^n,\quad 0<t<T). $$
A feature of these equations is that the function $\varphi (t)$ in them can arbitrarily change the sign on the segment $[0, T]$, while the function $\psi (t)$ is nonnegative for $t \in [0, T]$. For the problems under consideration, we prove existence and uniqueness theorems.

Keywords: degenerate parabolic equations, variable direction of evolution, boundary value problems, regular solutions, existence, uniqueness.

UDC: 517.946

MSC: 35R30, 35K20, 35L20

Received February 5, 2019, published June 4, 2019

DOI: 10.33048/semi.2019.16.048



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024