RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 777–785 (Mi semr1094)

Discrete mathematics and mathematical cybernetics

On automorphisms of a distance-regular graph with intersection array $\{44,30,5;1,3,40\}$

A. A. Makhnevab, V. V. Bitkinac

a N.N. Krasovsky Institute of Mathematics and Meckhanics, 16, S. Kovalevskoy str., Ekaterinburg, 620990, Russia
b Ural Federal University named after the first President of Russia B.N.Yeltsin, 19, Mira str., Ekaterinburg, 620002, Russia
c North Ossetian State University after Kosta Levanovich Khetagurov, 46, Vatutina stк., Vladikavkaz, 362025, Russia

Abstract: Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array $\{44,30,5;1,3,40\}$. Let $G={\rm Aut}(\Gamma)$ is nonsolvable group. If $\Gamma$ is arc-transitive then $G$ is is an extension of some group $P$ by $PGL_2(11)$, $|P:O_3(P)|=2$, $|G_a:P_a|=11$ and $|P:P_a|=9$.

Keywords: distance-regular graph, automorphism.

UDC: 519.17

MSC: 05C25

Received April 11, 2019, published June 8, 2019

DOI: 10.33048/semi.2019.16.052



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025