RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 949–954 (Mi semr1105)

This article is cited in 3 papers

Differentical equations, dynamical systems and optimal control

On exact solutions of a system of quasi-linear equations describing integrable geodesic flows on a surface

G. Abdikalikovaa, A. E. Mironovba

a Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
b Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia

Abstract: In this paper, for the first time, explicit solutions of a semi-Hamiltonian system of quasi-linear differential equations by the generalized hodograph method are found. These solutions define (local) metrics on a surface for which the geodesic flow has a polynomial in momenta integrals of the fourth degree.

Keywords: integrable geodesic flows, the generalized hodograph method.

UDC: 517.938

MSC: 35L65,37J35

Received May 18, 2019, published July 1, 2019

DOI: 10.33048/semi.2019.16.063



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024