RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 1493–1530 (Mi semr1144)

This article is cited in 1 paper

Mathematical logic, algebra and number theory

Isomorphisms of lattices of subalgebras of the semifield of continuous positive functions with max-addition

V. V. Sidorov

Vyatka State University, 36, Moskovskaya str., Kirov, 610000, Russia

Abstract: Let $\mathbb{P}^{\vee}$ be the semifield of positive real numbers with operations of max-addition and multiplication and $U^{\vee}(X)$ be the semifield of continuous $\mathbb{P}^{\vee}$-valued functions on an arbitrary topological space $X$ with pointwise operation max-addition and multiplication. We call a subset $A\subseteq U^{\vee}(X)$ a subalgebra if $f\vee g,$ $fg,$ $rf\in A$ for any $f, g\in A,$ $r\in\mathbb{P}^{\vee}.$ We describe isomorphisms of lattices of subalgebras of semifields $U^{\vee}(X).$

Keywords: semifield of continuous functions, subalgebra, isomorphism, lattice of subalgebras, Hewitt space, max-addition.

UDC: 512.556

MSC: 06B05, 16S60, 54H99

Received May 11, 2019, published October 21, 2019

DOI: 10.33048/semi.2019.16.103



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024