RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 1547–1552 (Mi semr1146)

This article is cited in 1 paper

Discrete mathematics and mathematical cybernetics

Automorphisms of distance-regular graph with intersection array $\{24,18,9;1,1,16\}$

A. A. Makhnevab

a N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 16, S. Kovalevskoy str., Ekaterinburg, 620990, Russia
b Vyatka State University, 36, Moskowskaya str., Kirov, 610000, Russia

Abstract: Koolen and Park classified Shilla graphs with $b=2$ and with $b=3$. Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph $\Gamma$ with intersection array $\{24,18,9;1,1,16\}$. Let $G={\rm Aut}(\Gamma)$ is nonsolvable group, $\bar G=G/S(G)$ and $\bar T$ is the socle of $\bar G$. Then $G$ contains now elements of order 35 and $\bar T\cong J_2, A_{10}$ or $\Omega^+_8(2)$. In particular graph $\Gamma$ is not vertex symmetric.

Keywords: distance-regular graph, automorphism.

UDC: 519.17

MSC: 05C25

Received September 17, 2019, published October 24, 2019

DOI: 10.33048/semi.2019.16.105



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025