RUS
ENG
Full version
JOURNALS
// Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
// Archive
Sib. Èlektron. Mat. Izv.,
2008
Volume 5,
Pages
417–426
(Mi semr116)
This article is cited in
12
papers
Research papers
Circular
$(5,2)$
-coloring of sparse graphs
O. V. Borodin
a
,
S. G. Hartke
b
,
A. O. Ivanova
c
,
A. V. Kostochka
a
,
D. B. West
b
a
Sobolev Institute of Mathematics, Novosibirsk, Russia
b
University of Illinois, Urbana, USA
c
Yakutsk State University
Abstract:
We prove that every triangle-free graph whose subgraphs all have average degree less than
$\frac{12}5$
has a circular
$(5,2)$
-coloring. This includes planar and projective-planar graphs with girth at least
$12$
.
Keywords:
triangle-free graph, circular
$(k,d)$
-coloring, projective-planar graph.
UDC:
519.172.2
MSC:
05С15
Received
August 14, 2008
, published
October 29, 2008
Language:
English
Fulltext:
PDF file (731 kB)
References
Cited by
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2024