RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2008 Volume 5, Pages 417–426 (Mi semr116)

This article is cited in 12 papers

Research papers

Circular $(5,2)$-coloring of sparse graphs

O. V. Borodina, S. G. Hartkeb, A. O. Ivanovac, A. V. Kostochkaa, D. B. Westb

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b University of Illinois, Urbana, USA
c Yakutsk State University

Abstract: We prove that every triangle-free graph whose subgraphs all have average degree less than $\frac{12}5$ has a circular $(5,2)$-coloring. This includes planar and projective-planar graphs with girth at least $12$.

Keywords: triangle-free graph, circular $(k,d)$-coloring, projective-planar graph.

UDC: 519.172.2

MSC: 05С15

Received August 14, 2008, published October 29, 2008

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024