RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 1795–1804 (Mi semr1168)

This article is cited in 3 papers

Differentical equations, dynamical systems and optimal control

A regularity criterion to the 3D Boussinesq equations

A. M. Alghamdia, I. Ben Omraneb, S. Galacd, M. A. Ragusaed

a Department of Mathematical Science , Faculty of Applied Science, Umm Alqura University, P.O.B. 14035, Makkah 21955, Saudi Arabia
b Department of Mathematics, Faculty of Science, Imam Mohammad Ibn Saud, Islamic University (IMSIU), P. O. Box 90950, Riyadh, 11623, Saudi Arabia
c Department of Mathematics, Ecole Normale Supérieure de Mostaganem, University of Mostaganem, Box 227, Mostaganem 27000, Algeria
d Dipartimento di Matematica e Informatica, Viale Andrea Doria, 6, 95125-Catania, Italy
e RUDN University, 6, Miklukho - Maklay str., Moscow, 117198, Russia

Abstract: The paper deals with the regularity criterion for the weak solutions to the 3D Boussinesq equations in terms of the partial derivatives in Besov spaces. It is proved that the weak solution $(u,\theta )$ becomes regular provided that $ (\nabla _{h}u,\nabla _{h}\theta )\in L^{\frac{8}{3}}(0,T;\overset{\cdot }{B} _{\infty ,\infty }^{-1}(\mathbb{R}^{3}))$. Our results improve and extend the well-known results of Fang-Qian [13] for the Navier–Stokes equations.

Keywords: Boussinesq equations, regularity criterion, weak solutions, Besov space.

UDC: 517.9

MSC: 35Q35, 35B65, 76D05

Received April 4, 2019, published December 2, 2019

Language: English

DOI: 10.33048/semi.2019.16.127



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025