RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 1927–1936 (Mi semr1179)

Mathematical logic, algebra and number theory

Lattice properties of Rogers semilattices of compuatble and generalized computable familie

M. Kh. Faizrahmanov

Kazan (Volga Region) Federal University, 18, Kremlyovskaya str., Kazan, 420008, Russia

Abstract: We consider the distributivity property and the property of being a lattice of Rogers semilattices of generalized computable families. We prove that the Rogers semilattice of any nontrivial $A$-computable family is not a lattice for every non-computable set $A$. It is also proved that if a set $A$ is non-computable then the Rogers semilattice of any infinite $A$-computable family is not weakly distribuive. Furtermore, we find two infinite computable families with nontrivial distributive and properly weakly distributive nontrivial Rogers semilattices.

Keywords: computable enumeration, generalized computable enumeration, $A$-computable enumeration, Rogers semilattice.

UDC: 510.5

MSC: 03D45

Received August 12, 2019, published December 18, 2019

DOI: 10.33048/semi.2019.16.138



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024