Abstract:
In $(q_1,q_2)$-quasimetric space $(X,d)$ we
proved the completeness theorem for $(q_1,q_2)$-quasimetric space
$(\mathcal{M}_{\overline{d}},H)$, where $\mathcal{M}_{\overline{d}}$
is the set of all $\overline{d}$-closed sets, $\overline{d}$ is
conjugate to $d$$(q_2,q_1)$-quasimetric, $H$ is the Hausdorff
distance.