RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 2090–2097 (Mi semr1189)

This article is cited in 2 papers

Real, complex and functional analysis

Completeness theorem in $(q_1,q_2)$-quasimetric spaces

A. V. Greshnovab, R. I. Zhukova

a Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
b Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia

Abstract: In $(q_1,q_2)$-quasimetric space $(X,d)$ we proved the completeness theorem for $(q_1,q_2)$-quasimetric space $(\mathcal{M}_{\overline{d}},H)$, where $\mathcal{M}_{\overline{d}}$ is the set of all $\overline{d}$-closed sets, $\overline{d}$ is conjugate to $d$ $(q_2,q_1)$-quasimetric, $H$ is the Hausdorff distance.

Keywords: $(q_1,q_2)$-quasimetric space, completeness, conjugate $(q_2,q_1)$-quasimetric, Hausdorff distance.

UDC: 515.124.2

MSC: 30L99, 53C23, 54D10

Received December 1, 2019, published December 27, 2019

DOI: 10.33048/semi.2019.16.148



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024