RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2020 Volume 17, Pages 318–337 (Mi semr1215)

Mathematical logic, algebra and number theory

Isomorphisms of semirings of continuous nonnegative functions with max-addition and isomorphisms of lattices of their subalgebras

V. V. Sidorov

Vyatka State University, 36, Moskovskaya str., Kirov, 610000, Russia

Abstract: Let $\mathbb{R}^{\vee}_+$ be the semifield with zero of nonnegative real numbers with operations of max-addition and multiplication and $C^{\vee}(X)$ be the semiring of continuous $\mathbb{R}^{\vee}_+$-valued functions on an arbitrary topological space $X$ with pointwise operation max-addition and multiplication. We call a subset $A\subseteq C^{\vee}(X)$ a subalgebra of the semiring $C^{\vee}(X)$ if $f\vee g,$ $fg,$ $rf\in A$ for any $f, g\in A$ and $r\in\mathbb{R}^{\vee}_+.$ For arbitrary topological spaces $X$ and $Y,$ we describe isomorphisms of the lattices of subalgebras (subalgebras with unity) of the semirings $C^{\vee}(X)$ and $C^{\vee}(Y).$

Keywords: semirings of continuous functions, subalgebra, isomorphism, lattice of subalgebras, Hewitt space, max-addition.

UDC: 512.556

MSC: 06B05, 16S60, 54H99

Received November 10, 2019, published March 5, 2020

DOI: 10.33048/semi.2020.17.021



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024