RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2020 Volume 17, Pages 380–394 (Mi semr1218)

This article is cited in 4 papers

Mathematical logic, algebra and number theory

The expressiveness of looping terms in the semantic programming

S. Goncharovab, S. Ospichevab, D. Ponomaryovacb, D. Sviridenkoab

a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia
c Ershov Institute of Informatics Systems, 6, Lavrentyeva ave., Novosibirsk, 630090, Russia

Abstract: We consider the language of $\Delta_0$-formulas with list terms interpreted over hereditarily finite list superstructures. We study the complexity of reasoning in extensions of the language of $\Delta_0$-formulas with non-standard list terms, which represent bounded list search, bounded iteration, and bounded recursion. We prove a number of results on the complexity of model checking and satisfiability for these formulas. In particular, we show that the set of $\Delta_0$-formulas with bounded recursive terms true in a given list superstructure $HW(\mathcal{M})$ is non-elementary (it contains the class $\mathrm{kExpTime}$, for all $k\geqslant 1$). For $\Delta_0$-formulas with restrictions on the usage of iterative and recursive terms, we show lower complexity.

Keywords: semantic programming, list structures, bounded quantification, reasoning complexity.

UDC: 510.5

MSC: 03D15, 68Q15

Received November 19, 2019, published March 10, 2020

Language: English

DOI: 10.33048/semi.2020.17.024



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025