RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2020 Volume 17, Pages 395–405 (Mi semr1219)

Real, complex and functional analysis

Approximation of discrete functions using special series by modified Meixner polynomials

R. M. Gadzhimirzaev

Department of Mathematics and Computer Science, Dagestan Federal Research Center of RAS, 45, M.Gadzhieva str., Makhachkala, 367032, Russia

Abstract: This article is devoted to the study of approximative properties of the special series by modified Meixner polynomials $M_{n,N}^\alpha(x)$ $(n=0, 1, \dots)$. For $\alpha>-1$ these polynomials form an orthogonal system on the grid $\Omega_{\delta}=\{0, \delta, 2\delta, \ldots\}$ with respect to the weight function $w(x)=e^{-x}\frac{\Gamma(Nx+\alpha+1)}{\Gamma(Nx+1)}$, where $\delta=\frac{1}{N}$, $N>0$. We obtained upper estimate on $\left[\frac{\theta_n}{2},\infty\right)$ for the Lebesgue function of partial sums of a special series, where $\theta_n=4n+2\alpha+2$.

Keywords: Meixner polynomials, Fourier series, special series, Lebesgue function.

UDC: 517.521

MSC: 41A10

Received April 28, 2018, published March 12, 2020

Language: English

DOI: 10.33048/semi.2020.17.025



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024