RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2020 Volume 17, Pages 534–539 (Mi semr1229)

This article is cited in 1 paper

Discrete mathematics and mathematical cybernetics

Perfect codes from $\mathrm{PGL}(2,5)$ in Star graphs

I. Yu. Mogilnykhab

a Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
b Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia

Abstract: The Star graph $S_n$ is the Cayley graph of the symmetric group $\mathrm{Sym}_n$ with the generating set $\{(1\ i): 2\leq i\leq n \}$. Arumugam and Kala proved that $\{\pi\in \mathrm{Sym}_n: \pi(1)=1\}$ is a perfect code in $S_n$ for any $n$, $n\geq 3$. In this note we show that for any $n$, $n\geq 6$ the Star graph $S_n$ contains a perfect code which is the union of cosets of the embedding of $\mathrm{PGL}(2,5)$ into $\mathrm{Sym}_6$.

Keywords: perfect code, efficient dominating set, Cayley graph, Star graph, projective linear group, symmetric group.

UDC: 519.725

MSC: 94B60

Received December 4, 2019, published April 10, 2020

Language: English

DOI: 10.33048/semi.2020.17.034



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025