RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2020 Volume 17, Pages 802–806 (Mi semr1251)

This article is cited in 2 papers

Real, complex and functional analysis

Exponential convexity and total positivity

N. O. Kotelina, A. B. Pevny

Syktyvkar State University, 55, Oktyabrsky ave., Syktyvkar, 167001, Russia

Abstract: Class of exponentially convex functions is a sub-class of convex functions on a given interval $(a, b)$. For exponentially convex function $f(x)$ S. N. Bernstein's integral representation holds. A condition for $f(x)$, providing the kernel $K(x, y)=f(x+y)$ to be totally positive is given. New examples of totally positive kernels are obtained. For example the kernel $(x+y)^{-\alpha}$ is totally positive for any $\alpha > 0$.

Keywords: exponential convexity, total positivity, kernel.

UDC: 517.518.28

MSC: 26D15

Received November 11, 2019, published June 15, 2020

Language: English

DOI: 10.33048/semi.2020.17.057



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024