RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2020 Volume 17, Pages 999–1008 (Mi semr1268)

This article is cited in 5 papers

Mathematical logic, algebra and number theory

On function spaces

Yu. L. Ershova, M. V. Schwidefskyab

a Sobolev Institute of Mathematics, 4, Acad. Koptyug ave., Novosibirsk, 630090, Russia
b Novosibirsk State Technical University, 20, K. Marx ave., Novosibirsk, 630073, Russia

Abstract: For certain properties $\mathfrak{P}$ of topological $T_0$-spaces, we prove that an arbitrary $T_0$-space $\mathbb{Y}$ has property $\mathfrak{P}$ if and only if the function space $\mathbb{C}(\mathbb{X},\mathbb{Y})$ endowed with the pointwise convergence topology possesses $\mathfrak{P}$ for some (and therefore, for each) $[\alpha^\ast-]$space $\mathbb{X}$.

Keywords: $d$-space, essentially complete space, function space, injective space, sober space, $T_0$-space.

UDC: 515.125

MSC: 54C35, 54D10

Received March 5, 2020, published July 21, 2020

Language: English

DOI: 10.33048/semi.2020.17.074



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025