RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2020 Volume 17, Pages 1217–1226 (Mi semr1284)

This article is cited in 1 paper

Real, complex and functional analysis

Truncated Wiener-Hopf equation and matrix function factorization

A. F. Voronin

Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia

Abstract: We will study relationship between a convolution equation of second kind on a finite interval and the Riemann —Hilbert boundary value problems. In addition, as a consequence of the results obtained in the work, Theorem 2 of the following article will be supplemented [3].

Keywords: Riemann boundary value problems, factorization of matrix functions, partial indices, stability, unique, convolution equation, truncated Wiener —Hopf equation.

UDC: 517.544

MSC: 47A68

Received September 17, 2019, published September 1, 2020

Language: English

DOI: 10.33048/semi.2020.17.090



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025