RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2020 Volume 17, Pages 1280–1287 (Mi semr1288)

Mathematical logic, algebra and number theory

Stone lattices of multiply $\Omega$-canonical Fitting classes

O. V. Kamozina

Bryansk state University of engineering and technology, 3, Stanke Dimitrova ave., Bryansk, 241037, Russia

Abstract: Let $L$ be a lattice with $0$ and $1$. A distributive lattice $L$ with pseudocomplements, each element of which satisfies an identity $a^{\circ}\vee (a^{\circ} )^{\circ} =1$, where $a^{\circ}$ is a pseudocomplement of an element $a$, is called a Stone lattice. The article describes multiply $\Omega$-canonical Fitting classes with a Stone lattice of multiply $\Omega$-canonical Fitting subclasses. It is shown that such Fitting classes are subclasses of the class $\mathfrak{D}_\Omega =\times_{A \in \Omega} \mathfrak{G}_A=(B_1 \times B_2 \times \dots \times B_n$ : $ B_i \in \mathfrak{G}_{A_i}$ for some $A_i\in\Omega$, $i\in\{ 1,2,\dots,n \}$, $n\in\mathbb N$).

Keywords: finite group, Fitting class, $\Omega$-canonical Fitting class, lattice of Fitting classes, Stone lattice.

UDC: 512.542

MSC: 20А17

Received December 3, 2018, published September 8, 2020

Language: English

DOI: 10.33048/semi.2020.094



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024