RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2020 Volume 17, Pages 1715–1721 (Mi semr1310)

This article is cited in 3 papers

Geometry and topology

On hypersurfaces with Kirichenko–Uskorev structure in Kählerian manifolds

M. B. Banaru, G. A. Banaru

Smolensk State University, 4, Przhevalskogo str., Smolensk, 214000, Russia

Abstract: Some criteria of minimality of a hypersurfaces of a Kählerian manifold, equipped with an almost contact metric structure of cosymplectic type, are established. It is proved that a minimal hypersurfaces of a Kählerian manifold, equipped with an almost contact metric Kirichenko–Uskorev structure, is totally umbilical if and only it is totally geodesic.

Keywords: Kählerian manifold, almost contact metric structure, Kirichenko–Uskorev structure, minimal hypersurface, second fundamental form.

UDC: 514.76

MSC: 53B35, 53B50

Received March 3, 2020, published October 23, 2020

DOI: 10.33048/semi.2020.17.116



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024