RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2020 Volume 17, Pages 2084–2095 (Mi semr1333)

This article is cited in 2 papers

Discrete mathematics and mathematical cybernetics

On perfect colorings of infinite multipath graphs

M. A. Lisitsynaa, S. V. Avgustinovichb, O. G. Parshinac

a Budyonny Military Academy of the Signal Corps, 3, pr. Tikhoretsky ave., St Petersburg, 194064, Russia
b Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
c Czech Technical University in Prague, 13, Trojanova str., Prague, 120 00, Czech Republic

Abstract: A coloring of vertices of a given graph is called perfect if the color structure of each sphere of radius $1$ in the graph depends only on the color of the sphere center. Let $n$ be a positive integer. We consider a lexicographic product of the infinite path graph and a graph $G$ that can be either the complete or empty graph on $n$ vertices. We give a complete description of perfect colorings with an arbitrary number of colors of such graph products.

Keywords: perfect coloring, equitable partition, equivalent colors, infinite multipath graph.

UDC: 519.174.7

MSC: 05C50

Received June 11, 2020, published December 18, 2020

Language: English

DOI: 10.33048/semi.2020.17.139



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024