RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2021 Volume 18, Issue 1, Pages 27–42 (Mi semr1344)

Discrete mathematics and mathematical cybernetics

Inverse problems of graph theory: graphs without triangles

A. A. Makhnevab, I. N. Belousovba, D. V. Paduchikhb

a Ural Federal University, Ekaterinburg, 620990, Russia
b N.N. Krasovsky Institute of Mathematics and Mechanics, 16, S. Kovalevskoy str., 620990, Ekaterinburg, Russia

Abstract: Graph $\Gamma_i$ for a distance-regular graph $\Gamma$ of diameter 3 can be strongly regular for $i=2$ or $i=3$. Finding intersection array of graph $\Gamma$ by the parameters of $\Gamma_i$ is an inverse problem. Earlier direct and inverse problems have been solved by A.A. Makhnev, M.S. Nirova for $i=3$ and by A.A. Makhnev and D.V. Paduchikh for $i=2$. In this work it is consider the case when graph $\Gamma_3$ is strongly regular without triangles and $v\le 100000$.

Keywords: distance regular graph, strongly regular graph without triangles.

UDC: 519.17

MSC: 05C25

Received March 2, 2020, published January 21, 2021

DOI: 10.33048/semi.2021.18.003



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025