RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2021 Volume 18, Issue 1, Pages 358–368 (Mi semr1366)

Mathematical logic, algebra and number theory

On closure of configurations in freely generated projective planes

N. T. Kogabaev

Sobolev Institute of Mathematics, 4, Acad. Koptyug ave., Novosibirsk, 630090, Russia

Abstract: Let $\mathcal{F}$ be an arbitrary freely generated projective plane. Based on Shirshov's combinatorial method, we introduce the notion of a reduced configuration in $\mathcal{F}$. We prove that for every subplane $\mathcal{P}$ generated in $\mathcal{F}$ by some configuration $\mathcal{B}$, there is a reduced configuration $\mathcal{B}'$ such that $\mathcal{P}$ is freely generated by $\mathcal{B}'$.

Keywords: projective plane, configuration, incidence, freely generated projective plane, nonassociative word, regular word.

UDC: 510.53, 514.146

MSC: 03D40, 51A35

Received November 27, 2019, published April 9, 2021

Language: English

DOI: 10.33048/semi.2021.18.025



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025