RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2021 Volume 18, Issue 1, Pages 534–547 (Mi semr1379)

Real, complex and functional analysis

Ergodic theorems in Banach ideals of compact operators

A. N. Azizov, V. I. Chilin

National University of Uzbekistan, 4, Universitet str., Tashkent, 100174, Uzbekistan

Abstract: Let $\mathcal H$ be an infinite-dimensional Hilbert space, and let $\mathcal B(\mathcal H)$ ($\mathcal K(\mathcal H)$) be the $C^\star$–algebra of all bounded (compact) linear operators in $\mathcal H$. Let $(E,\|\cdot\|_E)$ be a fully symmetric sequence space. If $\{s_n(x)\}_{n=1}^\infty$ are the singular values of $x\in\mathcal K(\mathcal H)$, let $\mathcal C_E=\{x\in\mathcal K(\mathcal H): \{s_n(x)\}\in E\}$ with $\|x\|_{\mathcal C_E}=\|\{s_n(x)\}\|_E$, $x\in\mathcal C_E$, be the Banach ideal of compact operators generated by $E$. We show that the averages $A_n(T)(x)=\frac1{n+1}\sum\limits_{k = 0}^n T^k(x) $ converge uniformly in $\mathcal C_E$ for any Dunford-Schwartz operator $T$ and $x\in\mathcal C_E$. Besides, if $0\leq x\in\mathcal B(\mathcal H)\setminus\mathcal K(\mathcal H)$, there exists a Dunford-Schwartz operator $T$ such that the sequence $\{A_n(T)(x)\}$ does not converge uniformly. We also show that the averages $A_n(T)$ converge strongly in $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$ if and only if $E$ is separable and $E \neq l^1$ as sets.

Keywords: symmetric sequence space, Banach ideal of compact operators, Dunford-Schwartz operator, individual ergodic theorem, mean ergodic theorem.

UDC: 517.98

MSC: 37A30, 46E30, 46L52, 47A35

Received February 26, 2021, published May 21, 2021

Language: English

DOI: 10.33048/semi.2021.18.039



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024