RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2021 Volume 18, Issue 2, Pages 744–757 (Mi semr1397)

This article is cited in 1 paper

Geometry and topology

On the uniqueness of $ \mathcal{I}$-limits of sequences

A. Blali, A. El Amrani, R. A. Hassani, A. Razouki

Sidi Mohamed Ben Abdellah University, B.P. 5206 Bensouda-Fès, Morocco

Abstract: We define the $ \mathcal{I} $-sequential topology on a topological space where $ \mathcal{I} $ denotes an ideal of the set of positive integers. We also study the relationship between $ \mathcal{I}$-separatedness and uniqueness of $ \mathcal{I}$-limits of sequences. Furthermore, we give a characterization of uniqueness of $ \mathcal{I}$- limits of sequences by $ \mathcal{I}$-closedness of sequentially $ \mathcal{I}$-compact subset.

Keywords: $ \mathcal{I}$-convergence, $ \mathcal{I}$-sequential topology, $ \mathcal{I}$-separated, sequentially $ \mathcal{I}$-compact, $ \mathcal{I}$-bounded, sequentially $ \mathcal{I}$-continuity.

UDC: 515.12

MSC: 40A05

Received January 30, 2021, published July 1, 2021

Language: English

DOI: 10.33048/semi.2021.18.055



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024