RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2021 Volume 18, Issue 2, Pages 923–930 (Mi semr1411)

Mathematical logic, algebra and number theory

HKSS-completeness of modal algebras

N. Bazhenov

Sobolev Institute of Mathematics, 4, Acad. Koptyug ave., Novosibirsk, 630090, Russia

Abstract: The paper studies computability-theoretic properties of countable modal algebras. We prove that the class of modal algebras is complete in the sense of the work of Hirschfeldt, Khoussainov, Shore, and Slinko. This answers an open question of Bazhenov [Stud. Log., 104 (2016), 1083–1097]. The result implies that every degree spectrum and every categoricity spectrum can be realized by a suitable modal algebra.

Keywords: modal algebra, computable structure, Boolean algebra with operators, degree spectrum, categoricity spectrum, computable dimension, first-order definability.

UDC: 510.5

MSC: 03C57

Received April 9, 2021, published September 1, 2021

Language: English

DOI: 10.33048/semi.2021.18.070



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024