RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2021 Volume 18, Issue 2, Pages 1210–1218 (Mi semr1433)

This article is cited in 1 paper

Mathematical logic, algebra and number theory

On some intervals in the lattice of ultraclones of rank $2$

S. A. Badmaev, A. E. Dugarov, I. V. Fomina, I. K. Sharankhaev

Dorzhi Banzarov Buryat State University, 24a, Smolina str., Ulan-Ude, 670000, Russia

Abstract: In article the intervals in the lattice of ultraclones of rank $2$ are considered. The well-known classes of all monotone $M$, all self-dual $S$ and all linear $L$ Boolean functions are ultraclones of rank $2$. We proved that each of the intervals $\Im (M, H_2)$, $\Im (S, H_2)$, $\Im(L, H_2)$, where $H_2$ is complete ultraclone of rank $2$, contains exactly $4$ elements.

Keywords: hyperfunction, Boolean function, monotone function, self-dual function, linear function, superposition, closed set, clone, ultraclone, lattice, interval of lattice.

UDC: 519.716

MSC: 08A99

Received August 13, 2021, published November 16, 2021

DOI: 10.33048/semi.2021.18.092



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024