RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2021 Volume 18, Issue 2, Pages 1423–1432 (Mi semr1448)

This article is cited in 1 paper

Discrete mathematics and mathematical cybernetics

Enumeration of strictly Deza graphs with at most $21$ vertices

S. V. Goryainova, D. I. Panasenkoab, L. V. Shalaginova

a Chelyabinsk State University, 129, Bratiev Kashirinykh str., Chelyabinsk, 454001, Russia
b N.N. Krasovskii Institute of Mathematics and Mechanics, 16, S. Kovalevskaya str., Yekaterinburg, 620108, Russia

Abstract: A Deza graph $\Gamma$ with parameters $(v,k,b,a)$ is a $k$-regular graph with $v$ vertices such that any two distinct vertices have $b$ or $a$ common neighbours, where $b \geqslant a$. A Deza graph of diameter $2$ which is not a strongly regular graph is called a strictly Deza graph. We find all $139$ strictly Deza graphs up to $21$ vertices and list corresponding constructions and properties.

Keywords: Deza graph, strictly Deza graph, strongly regular graph, dual Seidel switching.

UDC: 519.17

MSC: 05C50, 05E10, 15A18

Received May 20, 2021, published November 30, 2021

Language: English

DOI: 10.33048/semi.2021.18.107



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024