RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2021 Volume 18, Issue 2, Pages 1433–1466 (Mi semr1452)

This article is cited in 2 papers

Real, complex and functional analysis

An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$

A. A. Shlapunova, N. Tarkhanovb

a Siberian Federal University, Institute of Mathematics and Computer Science, 79, Svobodnyi ave., Krasnoyarsk, 660041, Russia
b Universität Potsdam, Institut für Mathematik, 24/25, Karl-Liebknecht str., Potsdam (Golm), 14476, Germany

Abstract: We consider an initial problem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n \times [0,T]$, $n\geq 3$, with a positive time $T$. We prove that the problem induces an open injective mappings on the scales of specially constructed function spaces of Bochner-Sobolev type. In particular, the corresponding statement on the intersection of these classes gives an open mapping theorem for smooth solutions to the Navier-Stokes equations.

Keywords: Navier-Stokes equations, de Rham complex, open mapping theorem.

UDC: 517

MSC: 35K45, 58A10, 35Q35, 47B01

Received September 3, 2021, published December 1, 2021

Language: English

DOI: 10.33048/semi.2021.18.108



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024