RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2021 Volume 18, Issue 2, Pages 1517–1530 (Mi semr1458)

This article is cited in 2 papers

Mathematical logic, algebra and number theory

On centers of soluble graphs

L. S. Kazarina, V. N. Tutanovb

a Yaroslavl Demidov State University 14, Sovetskaya str., Yaroslavl, 15003, Russia
b Gomel branch of "MITSO" International University, 46a, Oktyabrya ave., Gomel, 246029, Belarus

Abstract: Let $G$ be a finite group and $V=\pi(G)$ be a set of all prime divisors of its order. A soluble graph $\Gamma_{sol}(G)$ is a graph with a set of vertices $V$, where two vertices $p$ and $q$ in $V$ are adjacent if there exists a soluble subgroup $H$ of $G$ whose order is divisible by $pq$. We study centers of soluble graphs of finite sporadic and exceptional simple groups of Lie types.

Keywords: finite group, $\pi$-subgroup, exceptional simple group of Lie type, sporadic simple group, soluble graph.

UDC: 512.54

MSC: 20D20

Received February 28, 2021, published December 2, 2021

Language: English

DOI: 10.33048/semi.2021.18.114



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025