RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2021 Volume 18, Issue 2, Pages 1625–1638 (Mi semr1464)

This article is cited in 3 papers

Real, complex and functional analysis

Reduction of the Kolmogorov inequality for a non negative part of the second derivative on the real line to the inequality for convex functions on an interval

N. S. Payuchenko

N.N. Krasovskii institute of Mathematics and Mechanics, 16, Sofya Kovalevskaya str., Yekaterinbuerg, 620108, Russia

Abstract: In this paper we delve into connection between sharp constants in the inequalities
$$\|y'\|_{L_q(\mathbb{R})}\le K_+ \sqrt{\|y\|_{L_r(\mathbb{R})}\|y''_+\|_{L_p(\mathbb{R})} },$$

$$\|u'\|_{L_q(0,1)}\le \overline{K} \sqrt{\|u\|_{L_r(0,1)} \|u''\|_{L_p(0,1)}},$$
where the second one is considered for convex functions $u(x)$, $x\in[0,1]$ with an absolutely continuous derivative that vanishes at the point $x=0$. We prove that $K_+=\overline{K}$ under conditions $1 \le q,r,p<\infty$ and $1/r+1/p=2/q$.

Keywords: Kolmogorov inequality, inequalities between norms of function and its derivatives, non-negative part of the second derivative, exact constant.

UDC: 517.51

MSC: 39B62

Received November 28, 2021, published December 15, 2021

DOI: 10.33048/semi.2021.18.120



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024