RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2021 Volume 18, Issue 2, Pages 1651–1656 (Mi semr1466)

This article is cited in 1 paper

Mathematical logic, algebra and number theory

Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg–Kegel graph

A. P. Khramovaa, N. V. Maslovabcd, V. V. Panshinae, A. M. Staroletovae

a Sobolev Institute of Mathematics, 4, Acad. Koptyug ave., Novosibirsk, 630090, Russia
b Krasovskii Institute of Mathematics and Mechanics UB RAS, 16, S. Kovalevskaja str., Yekaterinburg, 620108, Russia
c Ural Federal University, 19, Mira str., Yekaterinburg, 620002, Russia
d Ural Mathematical Center, 19, Mira str., Yekaterinburg, 620002, Russia
e Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia

Abstract: The Gruenberg–Kegel graph (or the prime graph) $\Gamma(G)$ of a finite group $G$ is defined as follows. The vertex set of $\Gamma(G)$ is the set of all prime divisors of the order of $G$. Two distinct primes $r$ and $s$ regarded as vertices are adjacent in $\Gamma(G)$ if and only if there exists an element of order $rs$ in $G$. Suppose that $L\cong E_6(3)$ or $L\cong{}^2E_6(3)$. We prove that if $G$ is a finite group such that $\Gamma(G)=\Gamma(L)$, then $G\cong L$.

Keywords: finite group, simple group, the Gruenberg–Kegel graph, exceptional group of Lie type $E_6$.

UDC: 512.542

MSC: 20D06

Received October 19, 2021, published December 21, 2021

Language: English

DOI: 10.33048/semi.2021.18.124



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024