RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2022 Volume 19, Issue 1, Pages 125–137 (Mi semr1489)

This article is cited in 1 paper

Mathematical logic, algebra and number theory

Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras

A. J. O. Andradea, G. C. Moraesa, R. N. Ferreirab, B. L. M. Ferreirab

a Federal University of ABC, 5001, dos Estados ave., Santo André, 09210-580, Brazil
b Federal University of Technology, 800, Professora Laura Pacheco Bastos ave., Guarapuava, 85053-510, Brazil

Abstract: Let $A$ be an unital alternative $*$-algebra. Assume that $A$ contains a nontrivial symmetric idempotent element $e$ which satisfies $xA \cdot e = 0$ implies $x = 0$ and $xA \cdot (1_A - e) = 0$ implies $x = 0$. In this paper, it is shown that $\Phi$ is a nonlinear $*$-Jordan-type derivation on A if and only if $\Phi$ is an additive $*$-derivation. As application, we get a result on alternative $W^{*}$-algebras.

Keywords: $*$-Jordan-type derivation, $*$-derivation, alternative $*$-algebras.

UDC: 512

MSC: 17D05, 47B47

Received May 14, 2021, published March 1, 2022

Language: English

DOI: 10.33048/semi.2022.19.012



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024