RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2022 Volume 19, Issue 2, Pages 578–585 (Mi semr1522)

Mathematical logic, algebra and number theory

Splitting of c.e. degrees and superlowness

M. Kh. Faizrahmanov

Kazan (Volga Region) Federal University, Volga Region Scientific-Educational Centre of Mathematics, 35, Kremlevskaya str., Kazan, 420008, Russia

Abstract: In this paper, we show that for any superlow c.e. degrees $\mathbf{a}$ and $\mathbf{b}$ there exists a superlow c.e. degree $\mathbf{c}$ such that $\mathbf{c}\not=\mathbf{a}_0\cup\mathbf{b}_0$ for all c.e. degrees $\mathbf{a}_0\leqslant\mathbf{a}$, $\mathbf{b}_0\leqslant\mathbf{b}$. This provides one more elementary difference between the classes of low c.e. degrees and superlow c.e. degrees. We also prove that there is a c.e. degree that is not the supremum of any two superlow not necessarily c.e. degrees.

Keywords: low degree, superlow degree, jump-traceable set.

UDC: 510.5

MSC: 03D25

Received March 21, 2022, published August 29, 2022

Language: English

DOI: 10.33048/semi.2022.19.048



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024