RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2022 Volume 19, Issue 2, Pages 662–673 (Mi semr1529)

Real, complex and functional analysis

On Jacobian group and complexity of the $Y$-graph

Y. S. Kwona, A. D. Mednykhbc, I. A. Mednykhbc

a Department of Mathematics, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea
b Sobolev Institute of Mathematics, 4, Acad. Koptyug ave., Novosibirsk, 630090, Russia
c Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia

Abstract: In the present paper we suggest a simple approach for counting Jacobian group of the $Y$-graph $Y(n; k, l, m).$ In the case $Y(n; 1, 1, 1)$ the structure of the Jacobian group will be find explicitly. Also, we obtain a closed formula for the number of spanning trees of $Y$-graph in terms of Chebyshev polynomials and give its asymtotics.

Keywords: spanning tree, Jacobian group, Laplacian matrix, Chebyshev polynomial, Mahler measure.

UDC: 519.173.5, 519.172

MSC: 05C30, 39A06

Received November 1, 2021, published September 6, 2022

Language: English

DOI: 10.33048/semi.2022.19.055



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024