RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2022 Volume 19, Issue 2, Pages 815–834 (Mi semr1542)

This article is cited in 1 paper

Mathematical logic, algebra and number theory

On function spaces. II

Yu. L. Ershov, M. V. Schwidefsky

Sobolev Institute of Mathematics, Acad. Koptyug ave., 4, 630090, Novosibirsk, Russia

Abstract: For certain properties $\mathfrak{P}$ of topological $T_0$-spaces, we prove that a $T_0$-space $\mathbb{Y}$ has property $\mathfrak{P}$ if and only if the function space $\mathbb{C}_\mathcal{T}(\mathbb{X},\mathbb{Y})$ endowed with a particular topology $\mathcal{T}$ possesses $\mathfrak{P}$ for some $T_0$-space $\mathbb{X}$.

Keywords: $A$-space, core-compact space, $d$-space, essentially complete space, function space, injective space, sober space, $T_0$-space.

UDC: 515.122.22

MSC: 54C35, 54D10

Received February 23, 2022, published November 11, 2022

Language: English

DOI: 10.33048/semi.2022.19.069



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025