RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2022 Volume 19, Issue 2, Pages 852–860 (Mi semr1544)

Probability theory and mathematical statistics

Inequalities for the average first exit time from the strip for the Levy process

V. I. Lotovab, V. R. Khodzhibaevcd

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova str., 1, 630090, Novosibirsk, Russia
c Institute of Mathematics Uzbekistan Akademy of Sciences, Universitetskaya str., 46, 100174, Tashkent, Uzbekistan
d Namangan Engineering - construction Institute, Islam Karimov str., 12, 160103, Namangan, Uzbekistan

Abstract: We study first exit time from a strip for a homogeneous stochastic process with independent increments (the Levy process). Two-sided inequalities are found for the average of this exit time under various conditions on the process.

Keywords: stochastic Levy process, first exit time, boundary crossing problem, ruin probability.

UDC: 519.21

MSC: 60G50

Received July 25, 2022, published November 11, 2022

DOI: 10.33048/semi.2022.19.071



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025