RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2007 Volume 4, Pages 249–277 (Mi semr155)

This article is cited in 3 papers

Research papers

Asymptotics for nonlinear damped wave equations with large initial data

N. Hayashia, E. I. Kaikinab, P. I. Naumkinb

a Department of Mathematics, Graduate School of Science, Osaka University, Japan
b Instituto de Matemáticas, Universidad Nacional Autónoma de México

Abstract: We study the one dimensional nonlinear damped wave equation
\begin{equation} \begin{cases} u_{tt}+u_{t}-u_{xx}=\lambda|u|^{\sigma}u,&x\in\mathbf{R},\quad t>0,\\ u(0,x)=u_0(x),& x\in\mathbf{R},\\ u_t(0,x)=u_1(x),& x\in\mathbf{R}, \end{cases} \tag{0.1} \end{equation}
where $\sigma>0$, $\lambda\in\mathbf R$. Our aim is to prove the large time asymptotic formulas for solutions of the Cauchy problem (0.1) without any restriction on the size of the initial data.

UDC: 517.955.8

MSC: 35Q40, 35B40

Received August 25, 2006, published May 28, 2007

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025