RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2022 Volume 19, Issue 2, Pages 949–958 (Mi semr1552)

Geometry and topology

The volume of a hyperbolic antipodal octahedron

B. Vuong

Regional Scientific and Educational Mathematical Center, Tomsk State University, pr. Lenina, 36, 634050, Tomsk, Russia

Abstract: We consider the hyperbolic antipodal octahedron. It is an octahedron with antipodal symmetry in the hyperbolic space $\mathbb{H}^3$. We establish necessary and sufficient conditions for the existence of such an octahedron in $\mathbb{H}^3$. By dividing the octahedron into appropriate tetrahedra we obtain an explicit integral formula for the volume of the hyperbolic antipodal octahedron.

Keywords: hyperbolic octahedron, hyperbolic volume, antipodal symmetry, hyperbolic tetrahedron, integral formula.

UDC: 514.132

MSC: 52B15, 51M20, 51M25, 51M10

Received November 7, 2022, published December 10, 2022

Language: English

DOI: 10.33048/semi.2022.19.079



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025