RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2022 Volume 19, Issue 2, Pages 1077–1087 (Mi semr1559)

Mathematical logic, algebra and number theory

On nilpotent Schur groups

G. K. Ryabovab

a Novosibirsk State Technical University, K. Marx avenue, 20, 630073, Novosibirsk, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Abstract: A finite group $G$ is called a Schur group if every $S$-ring over $G$ is schurian, i.e. associated in a natural way with a subgroup of $\mathrm{Sym}(G)$ that contains all right translations. We prove that every nonabelian nilpotent Schur group belongs to one of a few explicitly given families of groups.

Keywords: Schur rings, Schur groups, nilpotent groups.

UDC: 512.542.74

MSC: 05E30, 20B25

Received April 30, 2022, published December 29, 2022

Language: English

DOI: 10.33048/semi.2022.19.086



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025