RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2022 Volume 19, Issue 2, Pages 1088–1093 (Mi semr1560)

Geometry and topology

Non-polynomial integrals of multidimensional geodesic flows and Lie algebras

S. V. Agapovab

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, 1, Pirogova str., 630090, Novosibirsk, Russia

Abstract: In this paper, we construct explicit local examples of multidimensional Riemannian metrics whose geodesic flows have non-polynomial first integrals and are completely integrable. We rely on a construction described in a recent paper by A.V. Galajinsky which allows one to construct such examples via the Casimir invariants of finite-dimensional Lie algebras.

Keywords: Riemannian metric, geodesic flow, non-polynomial first integral, Lie algebra, Casimir invariant.

UDC: 514.7

MSC: 53D25, 37J35

Received November 4, 2022, published December 29, 2022

DOI: 10.33048/semi.2022.19.087



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025