RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2007 Volume 4, Pages 292–295 (Mi semr158)

This article is cited in 28 papers

Research papers

Perfect colorings of the $12$-cube that attain the bound on correlation immunity

D. G. Fon-Der-Flaass

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We construct perfect $2$-colorings of the $12$-hypercube that attain our recent bound on the dimension of arbitrary correlation immune functions. We prove that such colorings with parameters $(x,12-x,4+x,8-x)$ exist if $x=0,2,3$ and do not exist if $x=1$.

UDC: 519.172.2

MSC: 05С15

Received May 15, 2007, published June 29, 2007



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024