RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2023 Volume 20, Issue 1, Pages 262–274 (Mi semr1585)

This article is cited in 1 paper

Mathematical logic, algebra and number theory

On two intervals in the lattice of partial ultraclones of rank $2$

S. A. Badmaev, A. E. Dugarov, I. V. Fomina, I. K. Sharankhaev

Dorzhi Banzarov Buryat State University, 24a, Smolina str., 670000, Ulan-Ude, Russia

Abstract: In article the intervals in the lattice of partial ultraclones of rank $2$ are considered. The well-known classes of all monotone $M$ and all self-dual $S$ Boolean functions are partial ultraclones of rank $2$. We proved that each of the intervals $\Im (M, M_2)$ and $\Im (S, M_2)$, where $M_2$ is complete partial ultraclone of rank $2$, is finite.

Keywords: multifunction, Boolean function, monotone function, self-dual function, superposition, closed set, clone, partial ultraclone, lattice, interval of lattice.

UDC: 519.716

MSC: 08A99

Received August 29, 2022, published March 31, 2023

DOI: 10.33048/semi.2023.20.021



© Steklov Math. Inst. of RAS, 2025