RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2023 Volume 20, Issue 1, Pages 285–292 (Mi semr1587)

Discrete mathematics and mathematical cybernetics

On the preservation of the Wiener index of cubic graphs upon vertex removal

A. A. Dobrynin

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Abstract: The Wiener index, $W(G)$, is the sum of distances between all vertices of a connected graph $G$. In 2018, Majstorović, Knor and Škrekovski posed the problem of finding $r$-regular graphs except cycle $C_{11}$ having at least one vertex $v$ with property $W(G)=W(G-v)$. An infinite family of cubic graphs with four such vertices is constructed.

Keywords: distance invariant, Wiener index, Šoltés problem.

UDC: 519.17

MSC: 05C09

Received February 3, 2023, published March 13, 2023

Language: English

DOI: 10.33048/semi.2023.20.023



© Steklov Math. Inst. of RAS, 2025