RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2023 Volume 20, Issue 1, Pages 514–523 (Mi semr1595)

Discrete mathematics and mathematical cybernetics

On Binomial coefficients of real arguments

T. I. Fedoryaeva

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Abstract: As is well-known, a generalization of the classical concept of the factorial $n!$ for a real number $x\in {\mathbb R}$ is the value of Euler's gamma function $\Gamma(1+x)$. In this connection, the notion of a binomial coefficient naturally arose for admissible values of the real arguments.
We prove by elementary means a number of properties of binomial coefficients $\binom{r}{\alpha}$ of real arguments $r, \alpha\in {\mathbb R}$ such as analogs of unimodality, symmetry, Pascal's triangle, etc. for classical binomial coefficients. The asymptotic behavior of such generalized binomial coefficients of a special form is established.

Keywords: factorial, binomial coefficient, gamma function, real binomial coefficient.

UDC: 519.114,517.581

MSC: 05A10,11B65

Received May 11, 2022, published July 18, 2023

Language: English

DOI: 10.33048/semi.2023.20.031



© Steklov Math. Inst. of RAS, 2025