RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2023 Volume 20, Issue 2, Pages 638–645 (Mi semr1601)

Discrete mathematics and mathematical cybernetics

Test fragments of perfect colorings of circulant graphs

M. A. Lisitsynaa, S. V. Avgustinovichb

a Budyonny Military Academy of the Signal Corps, pr. Tikhoretsky, 3, 194064, St Petersburg, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Abstract: Let $G=(V,E)$ be a transitive graph. A subset $T$ of the vertex set $V(G)$ is a $k$-test fragment if for every perfect $k$-coloring $\phi$ of the graph $G$ there exists a position of this fragment, whose partial coloring allows to reconstruct the whole $\phi$.
The objects of this study are $k$-test fragments of infinite circulant graphs. An infinite circulant graph with distances $d_1 < d_2 < \ldots < d_n$ is a graph, whose set of vertices is the set of integers, and two vertices $i$ and $j$ are adjacent if $|i-j| \in \{d_1,d_2,…,d_n\}$. If $d_i = i$ for all $i$ from $1$ to $n$, then the graph is called an infinite circulant graph with a continuous set of distances.
Upper bounds for the cardinalities of minimal $k$-test fragments of infinite circulant graphs with a continuous set of distances are obtained for any $n$ and $k$. A rough estimate is also obtained in the general case – for infinite circulant graphs with distances $d_1, d_2, \ldots , d_n$ and an arbitrary finite $k$.

Keywords: perfect coloring, infinite circulant graph, $k$-test fragment.

UDC: 519.174.7

MSC: 05C50

Received January 5, 2023, published September 22, 2023

DOI: 10.33048/semi.2023.20.038



© Steklov Math. Inst. of RAS, 2025